Информатика. Учебное пособие

       

Как измеряется количество информации?


Какое количество информации содержится, к примеру, в тексте романа "Война и мир", во фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является следующий вывод:

В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных.

В настоящее время получили распространение подходы к определению понятия "количество информации", основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте.   Эти подходы используют математические понятия вероятности и логарифма.   Если вы еще не знакомы с этими понятиями, то можете пока   пропустить этот материал.

 

 

        Подходы к определению количества информации.   Формулы Хартли и Шеннона.

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.

            Формула Хартли:   I = log2N

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 > 6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений:

  • при бросании монеты: "выпала решка", "выпал орел";
  • на странице книги: "количество букв чётное", "количество букв нечётное".

  • Определим теперь, являются ли равновероятными сообщения " первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

    Для задач такого рода американский учёный Клод Шеннон

    предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.



                          Формула Шеннона: I = — ( p1log2

    p1 + p2 log2 p2

    + . . . + pN log2 pN),

    где pi — вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.


    Легко заметить, что если вероятности p1, ..., pN равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

    Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями.

    В качестве единицы информации Клод Шеннон предложил принять  один  бит

       (англ. bit — binary digit

    — двоичная цифра).



    Бит в теории информации — количество информации, необходимое для различения двух равновероятных сообщений   (типа "орел"—"решка", "чет"—"нечет" и т.п.).

    В вычислительной технике битом называют наименьшую "порцию" памяти компьютера, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд.

    Бит — слишком мелкая единица измерения. На практике чаще применяется более крупная единица —  байт,  равная  восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28).

    Широко используются также ещё более крупные производные единицы информации:

  • 1 Килобайт (Кбайт) = 1024 байт = 210 байт,


  • 1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,


  • 1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.


  • В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

  • 1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,


  • 1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.


  • За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит) единица информации.


    Содержание раздела